Publication:

In vivo magnetic resonance P-31-Spectral Analysis With Neural Networks: 31P-SPAWNN

cris.lastimport.scopus

2024-08-09T13:30:25Z

cris.legacyId

297263

cris.virtual.department

CIBM-AIT

cris.virtual.sciperId

169484

cris.virtual.unitManager

Van De Ville, Dimitri

cris.virtualsource.author-scopus

61a91c74-42a4-4907-8862-434efd63c8f6

cris.virtualsource.department

61a91c74-42a4-4907-8862-434efd63c8f6

cris.virtualsource.orcid

61a91c74-42a4-4907-8862-434efd63c8f6

cris.virtualsource.rid

61a91c74-42a4-4907-8862-434efd63c8f6

cris.virtualsource.sciperId

61a91c74-42a4-4907-8862-434efd63c8f6

cris.virtualsource.unitManager

623ed2ad-2322-4e7e-891d-2b1157405f91

datacite.rights

metadata-only

dc.contributor.author

Songeon, Julien

dc.contributor.author

Courvoisier, Sebastien

dc.contributor.author

Xin, Lijing

dc.contributor.author

Agius, Thomas

dc.contributor.author

Dabrowski, Oscar

dc.contributor.author

Longchamp, Alban

dc.contributor.author

Lazeyras, Francois

dc.contributor.author

Klauser, Antoine

dc.date.accessioned

2022-10-10T02:31:16

dc.date.available

2022-10-10T02:31:16

dc.date.created

2022-10-10

dc.date.issued

2022-09-25

dc.date.modified

2024-10-18T14:28:05.510761Z

dc.description.abstract

Purpose: We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 (P-31) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the performance of the two approaches, are compared in this work.

dc.description.abstract

Theory and Methods: Convolutional neural network architectures have been proposed for the analysis and quantification of P-31-spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three-dimensional P-31-magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P-SPAWNN or traditional least-square fitting techniques.

dc.description.abstract

Results: The presented experiment has demonstrated both the reliability and accuracy of 31P-SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent precision. Processing time using 31P-SPAWNN can be further shortened up to two orders of magnitude.

dc.description.abstract

Conclusion: The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting.

dc.identifier.doi

10.1002/mrm.29446

dc.identifier.isi

WOS:000859031700001

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/191379

dc.publisher

WILEY

dc.publisher.place

Hoboken

dc.relation.issn

0740-3194

dc.relation.issn

1522-2594

dc.relation.journal

Magnetic Resonance In Medicine

dc.source

WoS

dc.subject

Radiology, Nuclear Medicine & Medical Imaging

dc.subject

Radiology, Nuclear Medicine & Medical Imaging

dc.subject

convolutional neural network

dc.subject

deep learning

dc.subject

in vivo

dc.subject

lcmodel

dc.subject

phosphorus magnetic resonance spectroscopy

dc.subject

metabolite concentrations

dc.subject

human brain

dc.subject

nmr

dc.subject

resolution

dc.subject

quantification

dc.subject

spectroscopy

dc.subject

p-31-mrs

dc.subject

spectra

dc.subject

atp

dc.title

In vivo magnetic resonance P-31-Spectral Analysis With Neural Networks: 31P-SPAWNN

dc.type

text::journal::journal article::research article

dspace.entity.type

Publication

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:297263

epfl.curator.email

jules.sachot-durette@epfl.ch

epfl.legacy.itemtype

Journal Articles

epfl.legacy.submissionform

ARTICLE

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

article

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections