Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The Case for RackOut: Scalable Data Serving Using Rack-Scale Systems
 
conference paper

The Case for RackOut: Scalable Data Serving Using Rack-Scale Systems

Novakovic, Stanko  
•
Daglis, Alexandros  
•
Bugnion, Edouard  
Show more
2016
Proceedings of the 2016 ACM Symposium on Cloud Computing
ACM Symposium on Cloud Computing

To provide low latency and high throughput guarantees, most large key-value stores keep the data in the memory of many servers. Despite the natural parallelism across lookups, the load imbalance, introduced by heavy skew in the popularity distribution of keys, limits performance. To avoid violating tail latency service-level objectives, systems tend to keep server utilization low and organize the data in micro-shards, which provides units of migration and replication for the purpose of load balancing. These techniques reduce the skew, but incur additional monitoring, data replication and consistency maintenance overheads. In this work, we introduce RackOut, a memory pooling technique that leverages the one-sided remote read primitive of emerging rack-scale systems to mitigate load imbalance while respecting service-level objectives. In RackOut, the data is aggregated at rack-scale granularity, with all of the participating servers in the rack jointly servicing all of the rack’s micro-shards. We develop a queuing model to evaluate the impact of RackOut at the datacenter scale. In addition, we implement a RackOut proof-of-concept key-value store, evaluate it on two experimental platforms based on RDMA and Scale-Out NUMA, and use these results to validate the model. Our results show that RackOut can increase throughput up to 6× for RDMA and 8.6× for Scale-Out NUMA compared to a scale-out deployment, while respecting tight tail latency service-level objectives.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

196-novakovic.pdf

Access type

openaccess

Size

1.36 MB

Format

Adobe PDF

Checksum (MD5)

fe86e72da7f7f8f429d8aec0b9671f76

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés