Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An Efficient Method Based on the Electromagnetic Time Reversal to Locate Faults in Power Networks
 
research article

An Efficient Method Based on the Electromagnetic Time Reversal to Locate Faults in Power Networks

Razzaghi, Reza  
•
Lugrin, Gaspard  
•
Manesh, Hossein
Show more
2013
IEEE Transactions on Power Delivery

This paper presents a new method based on the electromagnetic time-reversal (EMTR) theory for locating faults in power networks. The applicability of the EMTR technique to locate faults is first discussed. Using the classical transmission-line equations in the frequency domain, analytical expressions are derived to infer the location of the fault. The accuracy of the proposed method is then discussed in relation to the number of observation points adopted to record the fault-originated electromagnetic transients. Then, this paper illustrates the extension of the proposed method to the time domain. The experimental validation of the proposed method is presented by making reference to a reduced-scale coaxial cable system where real faults are hardware- emulated. Finally, the application of the proposed EMTR-based fault-location method to Electromagnetic Transients Program-simulated cases is presented. The simulated test cases are: a mixed overhead/coaxial cable transmission system and the IEEE 34-bus distribution test feeder. Compared to other transient-based fault-location techniques, the proposed method presents a number of advantages, namely, its straightforward applicability to inhomogeneous media (mixed overhead and coaxial power cable lines), the use of a single observation (measurement) point, and robustness against fault type and fault impedance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2013 - Razzaghi et al - FL Time reversal.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.49 MB

Format

Adobe PDF

Checksum (MD5)

075ba1759c7eabad377eef53f02cf9f4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés