Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Predicting Changes in Depression Severity Using the PSYCHE-D (Prediction of Severity Change-Depression) Model Involving Person-Generated Health Data: Longitudinal Case-Control Observational Study
 
research article

Predicting Changes in Depression Severity Using the PSYCHE-D (Prediction of Severity Change-Depression) Model Involving Person-Generated Health Data: Longitudinal Case-Control Observational Study

Makhmutova, Mariko
•
Kainkaryam, Raghu
•
Ferreira, Marta
Show more
March 1, 2022
Jmir Mhealth And Uhealth

Background: In 2017, an estimated 17.3 million adults in the United States experienced at least one major depressive episode, with 35% of them not receiving any treatment. Underdiagnosis of depression has been attributed to many reasons, including stigma surrounding mental health, limited access to medical care, and barriers due to cost.|Objective: This study aimed to determine if low-burden personal health solutions, leveraging person-generated health data (PGHD), could represent a possible way to increase engagement and improve outcomes.|Methods: Here, we present the development of PSYCHE-D (Prediction of Severity Change-Depression), a predictive model developed using PGHD from more than 4000 individuals, which forecasts the long-term increase in depression severity. PSYCHE-D uses a 2-phase approach. The first phase supplements self-reports with intermediate generated labels, and the second phase predicts changing status over a 3-month period, up to 2 months in advance. The 2 phases are implemented as a single pipeline in order to eliminate data leakage and ensure results are generalizable.|Results: PSYCHE-D is composed of 2 Light Gradient Boosting Machine (LightGBM) algorithm-based classifiers that use a range of PGHD input features, including objective activity and sleep, self-reported changes in lifestyle and medication, and generated intermediate observations of depression status. The approach generalizes to previously unseen participants to detect an increase in depression severity over a 3-month interval, with a sensitivity of 55.4% and a specificity of 65.3%, nearly tripling sensitivity while maintaining specificity when compared with a random model.|Conclusions: These results demonstrate that low-burden PGHD can be the basis of accurate and timely warnings that an individual's mental health may be deteriorating. We hope this work will serve as a basis for improved engagement and treatment of individuals experiencing depression.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PDF-1.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

976.05 KB

Format

Adobe PDF

Checksum (MD5)

01eb2e969d41e48d6404ffcc216b9094

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés