Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
 
Loading...
Thumbnail Image
review article

Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies

Abdalla, Elcio
•
Abellan, Guillermo Franco
•
Aboubrahim, Amin
Show more
June 1, 2022
Journal Of High Energy Astrophysics

The standard Lambda Cold Dark Matter (Lambda CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H-0, the sigma(8)-S-8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 sigma tension between the Planck CMB estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Omega(m), and the amplitude or rate of the growth of structure (sigma(8), f sigma(8)). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H-0-S-8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. (C) 2022 The Author(s). Published by Elsevier B.V.

  • Details
  • Metrics
Type
review article
DOI
10.1016/j.jheap.2022.04.002
Web of Science ID

WOS:000807122400002

Author(s)
Abdalla, Elcio
•
Abellan, Guillermo Franco
•
Aboubrahim, Amin
•
Agnello, Adriano
•
Akarsu, Ozgur
•
Akrami, Yashar
•
Alestas, George
•
Aloni, Daniel
•
Amendola, Luca
•
Anchordoqui, Luis A.
Show more
Date Issued

2022-06-01

Publisher

ELSEVIER

Published in
Journal Of High Energy Astrophysics
Volume

34

Start page

49

End page

211

Subjects

Astronomy & Astrophysics

•

fine-structure constant

•

microwave-anisotropy-probe

•

oscillation spectroscopic survey

•

dark energy survey

•

large-scale structure

•

baryon acoustic-oscillations

•

universal rotation curve

•

matter power spectrum

•

large-angle correlations

•

hubble-space-telescope

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPPC  
Available on Infoscience
August 29, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/190428
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés