Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhanced MR Image Classification Using Hybrid Statistical and Wavelets Features
 
research article

Enhanced MR Image Classification Using Hybrid Statistical and Wavelets Features

Latif, Ghazanfar
•
Iskandar, D. N. F. Awang
•
Alghazo, Jaafar M.
Show more
2019
Ieee Access

Classification of brain tumor is one of the most vital tasks within medical image processing. Classification of images greatly depends on the features extracted from the image, and thus, feature extraction plays a great role in the correct classification of images. In this paper, an enhanced method is presented for glioma MR images classification using hybrid statistical and wavelet features. In the proposed method, 52 features are extracted using the first-order and second-order statistical features (based on the four MRI modalities: Flair, T1, T1c, and T2) in addition to the discrete wavelet transform producing a total of 152 features. The extracted features are applied to the multilayer perceptron (MLP) classifier. The results using the MLP were compared with various known classifiers. The method was tested on the dataset MICCAI BraTS 2015 which is a standard dataset used for research purposes. The proposed hybrid statistical and wavelet features produced 96.72% accuracy for high-grade glioma and 96.04% accuracy for low-grade glioma, which are relatively better compared to the existing studies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

08580525.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

7.83 MB

Format

Adobe PDF

Checksum (MD5)

d630b0c1b3ec56cc9174a1b1fbd96354

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés