Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. A function approximation algorithm using multilevel active subspaces
 
preprint

A function approximation algorithm using multilevel active subspaces

Nobile, Fabio  
•
Raviola, Matteo  
•
Tempone, Raúl
2025

The Active Subspace (AS) method is a widely used technique for identifying the most influential directions in high-dimensional input spaces that affect the output of a computational model. The standard AS algorithm requires a sufficient number of gradient evaluations (samples) of the input output map to achieve quasi-optimal reconstruction of the active subspace, which can lead to a significant computational cost if the samples include numerical discretization errors which have to be kept sufficiently small. To address this issue, we propose a multilevel version of the AS method (MLAS) that utilizes samples computed with different accuracies and yields different active subspaces across accuracy levels, which can match the accuracy of single-level AS with reduced computational cost, making it suitable for downstream tasks such as function approximation. In particular, we propose to perform the latter via optimally-weighted least-squares polynomial approximation in the different active subspaces, and we present an adaptive algorithm to choose dynamically the dimensions of the active subspaces and polynomial spaces. We demonstrate the practical viability of the MLAS method with polynomial approximation through numerical experiments based on random partial differential equations (PDEs).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mlas.pdf

Type

Main Document

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

1017.26 KB

Format

Adobe PDF

Checksum (MD5)

512ba20a955340c981600cc3c15b16a8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés