Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. MHD equilibrium and stability of tokamaks and RFP systems with 3D helical cores
 
conference paper

MHD equilibrium and stability of tokamaks and RFP systems with 3D helical cores

Cooper, W. A.  
•
Graves, J. P.
•
Sauter, O.  orcid-logo
Show more
Dendy, Richard
2011
Plasma Physics and Controlled Fusion
15th Workshop on MHD stability control: <br> US-Japan Workshop on 3D Magnetic Field Effects in MHD Control

Bifurcated magnetohydrodynamic (MHD) equilibrium states are computed for ITER hybrid scenario and RFX-mod SHAx configurations with very flat or reversed core magnetic shear conditions. In the ITER studies, the minimum inverse rotational transform qmin is near unity, while for RFX-mod it is 1/8. Two equilibrium states are obtained: one is axisymmetric, the other displays a 3D helical core. In tokamak devices, the structure resembles a saturated ideal MHD internal kink mode. In the reversed-field pinch, the structure is seven-fold toroidally periodic. The equilibrium magnetic field spectrum in the Boozer coordinate frame is calculated in both the ITER and RFX-mod configurations and the implications are discussed. The RFX-mod equilibria are strongly unstable to external ideal MHD kink modes, which become stabilized with a closely fitting conducting shell when the equilibrium state has a weak reversed core shear. It is marginally unstable with a monotonic q-profile. Unstable modes are driven by the Ohmic current, with pressure and Pfirsch–Schl¨uter currents having a very weak effect. The external kink mode spectrum is dominated by coupled $m = 1$, $n = 6$ and $m = 2$, $n = 13$ Fourier components, which revert to $m = 1$, $n = 8$ and $m = 2$, $n = 15$ terms with a conducting wall in proximity to the plasma–vacuum interface.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

108814204.pdf

Access type

openaccess

Size

1.43 MB

Format

Adobe PDF

Checksum (MD5)

4b3d6a273cbe275fa41f8b02412e87f5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés