Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Diagnosing weakly first-order phase transitions by coupling to order parameters
 
research article

Diagnosing weakly first-order phase transitions by coupling to order parameters

D'Emidio, Jonathan  
•
Eberharter, Alexander A.
•
Lauchli, Andreas M.
August 1, 2023
Scipost Physics

The hunt for exotic quantum phase transitions described by emergent fractionalized de-grees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak first -order transitions from the numerical side. Addressing the latter, we revive the classic definition of the order parameter in the limit of a vanishing external field at the transi-tion. We demonstrate that this widely understood, yet so far unused approach provides a diagnostic test for first-order versus continuous behavior that is distinctly more sensi-tive than current methods. We first apply it to the family of Q-state Potts models, where the nature of the transition is continuous for Q & LE; 4 and turns (weakly) first order for Q > 4, using an infinite system matrix product state implementation. We then employ this new approach to address the unsettled question of deconfined quantum criticality in the S = 1/2 Neel to valence bond solid transition in two dimensions, focusing on the square lattice J -Q model. Our quantum Monte Carlo simulations reveal that both order parameters remain finite at the transition, directly confirming a first-order scenario with wide reaching implications in condensed matter and quantum field theory.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SciPostPhys_15_2_061.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.13 MB

Format

Adobe PDF

Checksum (MD5)

a5412be597778f9e24bddf01f91035ef

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés