Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Dense Disparity Estimation from Omnidirectional Images
 
conference paper

Dense Disparity Estimation from Omnidirectional Images

Arican, Zafer  
•
Frossard, Pascal  
2007
2007 IEEE Conference on Advanced Video and Signal Based Surveillance
AVSS 2007

This paper addresses the problem of dense estimation of disparities between omnidirectional images, in a spherical framework. Omnidirectional imaging certainly represents important advantages for the representation and processing of the plenoptic function in 3D scenes for applications in localization, or depth estimation for example. In this context, we propose to perform disparity estimation directly in a spherical framework, in order to avoid discrepancies due to inexact projections of omnidirectional images onto planes. We first perform rectification of the omnidirectional images in the spherical domain. Then we develop a global energy minimization algorithm based on the graph-cut algorithm, in order to perform disparity estimation on the sphere. Experimental results show that the proposed algorithm outperforms typical methods as the ones based on block matching, for both a simple synthetic scene, and complex natural scenes. The proposed method shows promising performances for dense disparity estimation and can be extended efficiently to networks of several camera sensors.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1569038449.pdf

Access type

openaccess

Size

666.74 KB

Format

Adobe PDF

Checksum (MD5)

2a164f67d88ca47aef3d54debe8619a7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés