Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI
 
research article

Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI

Auría Rasclosa, Anna  
•
Daducci, Alessandro  
•
Thiran, Jean-Philippe  
Show more
2015
Neuroimage

We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have proposed a global denoising of the diffusion data using spatial information prior to reconstruction, while others promote spatial regularisation through an additional empirical prior on the diffusion image at each $q$-space point. Our approach reconciles voxelwise sparsity and spatial regularisation and defines a spatially structured FOD sparsity prior, where the structure originates from the spatial coherence of the fibre orientation between neighbour voxels. The method is shown, through both simulated and real data, to enable accurate FOD reconstruction from a much lower number of $q$-space samples than the state of the art, typically 15 samples, even for quite adverse noise conditions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NIMG-14-2969_revised.pdf

Access type

openaccess

Size

6.41 MB

Format

Adobe PDF

Checksum (MD5)

c0300c0bd945479d1d166d64a3fab4e8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés