Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Non-linear transfer function identification of pressure probes using Siren Disks
 
research article

Non-linear transfer function identification of pressure probes using Siren Disks

Shalash, K.
•
Şahin, F.C.
•
Schiffmann, J.
2018
Experimental Thermal and Fluid Science

This article presents a Siren Disk proof of concept for the dynamic excitation of pressure probes, and a method to reconstruct distorted signals due to pneumatic channels. Constraints in sensor installation require placing a pressure transducer distant from the measurement point. The transducer is usually connected through a pneumatic channel – creating a probe, which alter its dynamic response. The Siren Disk is used for the identification of transfer functions of different pressure probe geometries. The device is capable of producing pressure signals up to 10 kHz and 3.5 bara (peak-to-peak = 2.5 bars). The transfer function is obtained through the comparison of the probe signal to a flush mounted reference transducer that is subjected to the same pressure signal. The response of the probes was shown to be highly non-linear. Hence, a multi-dimensional transfer function is developed for the system identification of the probes. The function is based on the Fourier series, and consists of a set of sub transfer functions describing the average gain and phase lag for the offset and the harmonics. The approach is well suited to capture the non-linear frequency response of complex sensor installations. Experiments show that the flat response of transducers is jeopardized by the introduction of the low pass filter behavior from the pneumatic channels. The probe’s signal was significantly distorted compared to the reference signal. The inverse transfer function is used to reconstruct the probe’s signal in the time domain. Good agreement is found between the reconstructed and the reference signals even at excitation frequencies beyond the probe’s resonant frequency. Hence, highlighting a wide range of validity for the proposed method.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Shalash_2018_Elsevier_ETFS_Postprint.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

3.99 MB

Format

Adobe PDF

Checksum (MD5)

74eba407bc70e98db590afe69a841e8f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés