Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution
 
research article

Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution

Remke, Stephanie C.
•
Buergin, Tobias H.
•
Ludvikova, Lucie
Show more
April 15, 2022
Water Research

Reactive intermediates formed upon irradiation of chromophoric dissolved organic matter (CDOM) contribute to the degradation of various organic contaminants in surface waters. Besides well-studied "short-lived" photo oxidants, such as triplet state CDOM (3CDOM*) or singlet oxygen, CDOM-derived "long-lived" photooxidants (LLPO) have been suggested as key players in the transformation of electron-rich contaminants. LLPO were hypothesized to mainly consist of phenoxyl radicals derived from phenolic moieties in the CDOM. To test this hypothesis and to better characterize LLPO, the transformation kinetics of selected target compounds (phenols and anilines) induced by a suite of electron-poor model phenoxyl radicals was studied in aerated aqueous solution at pH 8. The phenoxyl radicals were generated by photosensitized oxidation of the parent phenols using aromatic ketones as photosensitizers. Under steady-state irradiation, the presence of any of the electron-poor phenols lead to an enhanced abatement of the phenolic target compounds (at an initial concentration of 1.0 x 10(-7) M) compared to solutions containing the photosensitizer but no electron-poor phenol. A trend of increasing reactivity with increasing one-electron reduction potential of the electron-poor phenoxyl radical (range: 0.85-1.12 V vs. standard hydrogen electrode) was observed. Using the excited triplet state of 2-acetonaphthone as a selective oxidant for phenols, it was observed that the reactivity correlated with the concentration of electron-poor phenoxide present in solution. The rates of transformation of anilines induced by the 4-cyanophenoxyl radical were an order of magnitude smaller than for the phenolic target compounds. This was interpreted as a reduction of the radical intermediates back to the parent compound by the superoxide radical anion. Laser flash photolysis measurements confirmed the formation of the 4-cyanophenoxyl radical in solutions containing 2-acetonaphthone and 4-cyanophenol, and yielded values of (2.6 5.3) x 10(8) M-1 s(-1) for the second order rate constant for the reaction of this radical with 2,4,6-trimethylphenol. These and further results indicate that electron-poor model phenoxyl radicals generated through photosensitized oxidation are useful models to understand the photoreactivity of LLPO as part of the CDOM.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.watres.2022.118095
Web of Science ID

WOS:000758958500001

Author(s)
Remke, Stephanie C.
Buergin, Tobias H.
Ludvikova, Lucie
Heger, Dominik
Wenger, Oliver S.
von Gunten, Urs  
Canonica, Silvio
Date Issued

2022-04-15

Publisher

PERGAMON-ELSEVIER SCIENCE LTD

Published in
Water Research
Volume

213

Article Number

118095

Subjects

Engineering, Environmental

•

Environmental Sciences

•

Water Resources

•

Engineering

•

Environmental Sciences & Ecology

•

aquatic photochemistry

•

phototransformation

•

organic contaminant

•

dissolved organic matter

•

long-lived photooxidants

•

dissolved organic-matter

•

electron-transfer

•

transformation

•

reduction

•

water

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTQE  
Available on Infoscience
March 28, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/186733
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés