Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis
 
research article

Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis

Mathur, Bhoomika
•
Arif, Waqar
•
Patton, Megan E.
Show more
October 1, 2020
Jhep Reports

Background & Aims: Liver diseases are caused by many factors, such as genetics, nutrition, and viruses. Therefore, it is important to delineate transcriptomic changes that occur in various liver diseases. Methods: We performed high-throughput sequencing of mouse livers with diverse types of injuries, including cholestasis, diet-induced steatosis, and partial hepatectomy. Comparative analysis of liver transcriptome from mice and human samples of viral infections (HBV and HCV), alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH), and biliary atresia revealed distinct and overlapping gene profiles associated with liver diseases. We hypothesised that discrete molecular signatures could be utilised to assess therapeutic outcomes. We focused on cholestasis to test and validate the hypothesis using pharmacological approaches. Results: Here, we report significant overlap in the expression of inflammatory and proliferation-related genes across liver diseases. However, cholestatic livers were unique and displayed robust induction of genes involved in drug metabolism. Consistently, we found that constitutive androstane receptor (CAR) activation is crucial for the induction of the drug metabolic gene programme in cholestasis. When challenged, cholestatic mice were protected against zoxazolamine-induced paralysis and acetaminophen-induced hepatotoxicity. These protective effects were diminished upon inhibition of CAR activity. Further, drug metabolic genes were also induced in the livers from a subset of biliary atresia patients, but not in HBV and HCV infections, AH, or NASH. We also found a higher expression of CYP2B6, a CAR target, in the livers of biliary atresia patients, underscoring the clinical importance of our findings. Conclusions: Comparative transcriptome analysis of different liver disorders revealed specific induction of phase I and II metabolic genes in cholestasis. Our results demonstrate that CAR activation may lead to variations in drug metabolism and clinical outcomes in biliary atresia. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PIIS2589555920300744(1).pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.83 MB

Format

Adobe PDF

Checksum (MD5)

02563e0660ca716b219cad854dcd612a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés