Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Accurate and efficient band-gap predictions for metal halide perovskites at finite temperature
 
research article

Accurate and efficient band-gap predictions for metal halide perovskites at finite temperature

Wang, Haiyuan  
•
Tal, Alexey
•
Bischoff, Thomas  
Show more
November 15, 2022
Npj Computational Materials

We develop a computationally efficient scheme to accurately determine finite-temperature band gaps for metal halide perovskites belonging to the class ABX(3) (A = Rb, Cs; B = Ge, Sn, Pb; and X = F, Cl, Br, I). First, an initial estimate of the band gap is provided for the ideal crystalline structure through the use of a range-separated hybrid functional, in which the parameters are determined non-empirically from the electron density and the high-frequency dielectric constant. Next, we consider two kinds of band-gap corrections to account for spin-orbit coupling and thermal vibrations including zero-point motions. In particular, the latter effect is accounted for through the special displacement method, which consists in using a single distorted configuration obtained from the vibrational frequencies and eigenmodes, thereby avoiding lengthy molecular dynamics. The sequential consideration of both corrections systematically improves the band gaps, reaching a mean absolute error of 0.17 eV with respect to experimental values. The computational efficiency of our scheme stems from the fact that only a single calculation at the hybrid-functional level is required and that it is sufficient to evaluate the corrections at the semilocal level of theory. Our scheme is thus convenient for the screening of large databases of metal halide perovskites, including large-size systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41524-022-00869-6.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.19 MB

Format

Adobe PDF

Checksum (MD5)

66c1c6e49a1f446ea6f6c930a3011478

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés