Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Phosphoregulated orthogonal signal transduction in mammalian cells
 
research article

Phosphoregulated orthogonal signal transduction in mammalian cells

Scheller, Leo  
•
Schmollack, Marc
•
Bertschi, Adrian
Show more
June 18, 2020
Nature Communications

Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells. TCSs are the most abundant multi-component signal-processing units in bacteria, but are not found in the animal kingdom. The presented phosphoregulated orthogonal signal transduction (POST) system uses induced nanobody dimerization to regulate the trans-autophosphorylation activity of engineered histidine kinases. Engineered response regulators use the phosphohistidine residue as a substrate to autophosphorylate an aspartate residue, inducing their own homodimerization. We verify this approach by demonstrating control of gene expression with engineered, dimerization-dependent transcription factors and propose a phosphoregulated relay system of protein dimerization as a basic building block for next-generation protein circuits. Phosphoregulation is a key mechanism of signal processing. Here the authors build a phosphoregulated relay system in mammalian cells for orthogonal signal transduction.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-020-16895-1.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.83 MB

Format

Adobe PDF

Checksum (MD5)

9b378e14296b0276ac80d52a29e681be

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés