Publication: The progressive loss of brain network fingerprints in Amyotrophic Lateral Sclerosis predicts clinical impairment
The progressive loss of brain network fingerprints in Amyotrophic Lateral Sclerosis predicts clinical impairment
cris.lastimport.scopus | 2025-06-03T17:09:48Z | |
cris.legacyId | 295595 | |
cris.virtual.department | EDEE-ENS | |
cris.virtual.orcid | 0000-0001-6705-9689 | |
cris.virtual.parent-organization | INX-STI | |
cris.virtual.parent-organization | STI | |
cris.virtual.parent-organization | EPFL | |
cris.virtual.sciperId | 220921 | |
cris.virtual.unitId | 12143 | |
cris.virtual.unitManager | Skrivervik, Anja | |
cris.virtual.unitManager | Van De Ville, Dimitri | |
cris.virtualsource.author-scopus | 41a69f17-3c8b-49f5-96b4-a1dc5424e11d | |
cris.virtualsource.department | 41a69f17-3c8b-49f5-96b4-a1dc5424e11d | |
cris.virtualsource.orcid | 41a69f17-3c8b-49f5-96b4-a1dc5424e11d | |
cris.virtualsource.parent-organization | 7f145bd2-41f6-4990-96af-eb0d1745baf2 | |
cris.virtualsource.parent-organization | 7f145bd2-41f6-4990-96af-eb0d1745baf2 | |
cris.virtualsource.parent-organization | 7f145bd2-41f6-4990-96af-eb0d1745baf2 | |
cris.virtualsource.parent-organization | 7f145bd2-41f6-4990-96af-eb0d1745baf2 | |
cris.virtualsource.rid | 41a69f17-3c8b-49f5-96b4-a1dc5424e11d | |
cris.virtualsource.sciperId | 41a69f17-3c8b-49f5-96b4-a1dc5424e11d | |
cris.virtualsource.unitId | 7f145bd2-41f6-4990-96af-eb0d1745baf2 | |
cris.virtualsource.unitManager | 8ac1be90-ed87-4148-8176-c46c141f245f | |
cris.virtualsource.unitManager | 7f145bd2-41f6-4990-96af-eb0d1745baf2 | |
datacite.rights | metadata-only | |
dc.contributor.author | Romano, Antonella | |
dc.contributor.author | Lopez, Emahnuel Trosi | |
dc.contributor.author | Liparoti, Marianna | |
dc.contributor.author | Polverino, Arianna | |
dc.contributor.author | Minino, Roberta | |
dc.contributor.author | Trojsi, Francesca | |
dc.contributor.author | Bonavita, Simona | |
dc.contributor.author | Mandolesi, Laura | |
dc.contributor.author | Granata, Carmine | |
dc.contributor.author | Amico, Enrico | |
dc.contributor.author | Sorrentino, Giuseppe | |
dc.contributor.author | Sorrentino, Pierpaolo | |
dc.date.accessioned | 2022-08-01T02:39:49 | |
dc.date.available | 2022-08-01T02:39:49 | |
dc.date.created | 2022-08-01 | |
dc.date.issued | 2022-01-01 | |
dc.date.modified | 2024-10-18T12:13:14.409964Z | |
dc.description.abstract | Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by functional connectivity alterations in both motor and extra-motor brain regions. Within the framework of network analysis, fingerprinting represents a reliable approach to assess subject-specific connectivity features within a given population (healthy or diseased). Here, we applied the Clinical Connectome Fingerprint (CCF) analysis to source-reconstructed magnetoencephalography (MEG) signals in a cohort of seventy-eight subjects: thirty-nine ALS patients and thirty-nine healthy controls. We set out to develop an identifiability matrix to assess the extent to which each patient was recognisable based on his/her connectome, as compared to healthy controls. The analysis was performed in the five canonical frequency bands. Then, we built a multilinear regression model to test the ability of the "clinical fingerprint" to predict the clinical evolution of the disease, as assessed by the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-r), the King's disease staging system, and the Milano-Torino Staging (MiToS) disease staging system. We found a drop in the identifiability of patients in the alpha band compared to the healthy controls. Furthermore, the "clinical fingerprint" was predictive of the ALSFRS-r (p = 0.0397; beta = 32.8), the King's (p = 0.0001; beta = -7.40), and the MiToS (p = 0.0025; beta = -4.9) scores. Accordingly, it negatively correlated with the King's (Spearman's rho = -0.6041, p = 0.0003) and MiToS scales (Spearman's rho = -0.4953, p = 0.0040). Our results demonstrated the ability of the CCF approach to predict the individual motor impairment in patients affected by ALS. Given the subject-specificity of our approach, we hope to further exploit it to improve disease management. | |
dc.description.sponsorship | MIPLAB | |
dc.identifier.doi | 10.1016/j.nicl.2022.103095 | |
dc.identifier.isi | WOS:000828145400003 | |
dc.identifier.uri | ||
dc.publisher | ELSEVIER SCI LTD | |
dc.publisher.place | Oxford | |
dc.relation.issn | 2213-1582 | |
dc.relation.journal | Neuroimage-Clinical | |
dc.source | WoS | |
dc.subject | Neuroimaging | |
dc.subject | Neurosciences & Neurology | |
dc.subject | clinical connectome fingerprint | |
dc.subject | functional connectome | |
dc.subject | brain network identifiability | |
dc.subject | neurodegenerative diseases | |
dc.subject | motor neurons disease | |
dc.subject | magnetoencephalography | |
dc.subject | phase linearity | |
dc.subject | measurement | |
dc.subject | functional connectivity | |
dc.subject | disease progression | |
dc.subject | dysfunction | |
dc.subject | patterns | |
dc.subject | behavior | |
dc.title | The progressive loss of brain network fingerprints in Amyotrophic Lateral Sclerosis predicts clinical impairment | |
dc.type | text::journal::journal article::research article | |
dspace.entity.type | Publication | |
dspace.legacy.oai-identifier | oai:infoscience.epfl.ch:295595 | |
epfl.curator.email | ||
epfl.legacy.itemtype | Journal Articles | |
epfl.legacy.submissionform | ARTICLE | |
epfl.oai.currentset | OpenAIREv4 | |
epfl.oai.currentset | STI | |
epfl.oai.currentset | article | |
epfl.peerreviewed | REVIEWED | |
epfl.publication.version | ||
epfl.writtenAt | EPFL | |
oaire.citation.articlenumber | 103095 | |
oaire.citation.volume | 35 |
Files
License bundle
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: