Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Distributed Scalable Multi-Robot Learning using Particle Swarm Optimization
 
research article

Distributed Scalable Multi-Robot Learning using Particle Swarm Optimization

Pugh, James
•
Martinoli, Alcherio  
2009
Swarm Intelligence Journal

Designing effective behavioral controllers for mobile robots can be difficult and tedious; this process can be circumvented by using online learning techniques which allow robots to generate their own controllers online in an automated fash- ion. In multi-robot systems, robots operating in parallel can potentially learn at a much faster rate by sharing information amongst themselves. In this work, we use an adapted version of the Particle Swarm Optimization algorithm in order to accomplish distributed online robotic learning in groups of robots with access to only local infor- mation. The effectiveness of the learning technique on a benchmark task (generating high-performance obstacle avoidance behavior) is evaluated for robot groups of various sizes, with the maximum group size allowing each robot to individually contain and manage a single PSO particle. To increase the realism of the technique, different PSO neighborhoods based on limitations of real robotic communication are tested and com- pared in this scenario. We explore the effect of varying communication power for one of these communication-based PSO neighborhoods. To validate the effectiveness of these learning techniques, fully distributed online learning experiments are run using a group of 10 real robots, generating results which support the findings from our simulations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SIJ09.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

864.31 KB

Format

Adobe PDF

Checksum (MD5)

0b1399252fe8bd37771cf875aa5d6760

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés