Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ultra-High-Voltage (7-kV) Bidirectional Flyback Converter Used to Drive Capacitive Actuators
 
Loading...
Thumbnail Image
research article

Ultra-High-Voltage (7-kV) Bidirectional Flyback Converter Used to Drive Capacitive Actuators

Mottet, Raphael  
•
Almanza, Morgan  
•
Pniak, Lucas
Show more
September 1, 2021
Ieee Transactions On Industry Applications

Dielectric elastomer actuators (DEAs) have extremely advantageous characteristics such as lightness, compactness, flexibility, and large displacements. However, in order to operate, they can require voltages in the order of several thousands of volts. Thus, to unleash the full potential of DEAs, it becomes essential to be able to generate and manipulate such voltages with an electronics as compact and efficient as possible. While previous works showed that it was possible to implement a system capable of supplying voltages of up to 2.5 kV and recovering part of the energy stored in DEAs (due to their capacitive nature), no work managed to go over that threshold for two main reasons: first, due to the absence of switches capable of withstanding more than 4.5 kV, and, second, due to parasitic capacitances of the flyback's coupled inductor, which steal an increasingly large part of the energy destined for the load when the output voltage is higher. This article, therefore, proposes a global design, where the factors limiting the increase in the output voltage have been mastered. Through a careful design of the coupled inductor combined with the use of MOSFETs put in series, thanks to the pulsed transformer gate drive topology to handle the high voltages, this work goes beyond the current state of the art. Indeed, here, we present various strategies undertaken, which led to the manufacture of a bidirectional flyback converter capable of amplifying an input voltage of 12 V to more than 7 kV across a capacitive load and recuperating parts of the energy stored. A preliminary study of the efficiency shows an approximate 58% efficiency during the charge phase from 0 V to 7 kV and a 54% efficiency during the discharge phase.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TIA.2021.3094460
Web of Science ID

WOS:000690970400076

Author(s)
Mottet, Raphael  
•
Almanza, Morgan  
•
Pniak, Lucas
•
Boegli, Alexis  
•
Perriard, Yves  
Date Issued

2021-09-01

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Published in
Ieee Transactions On Industry Applications
Volume

57

Issue

5

Start page

5145

End page

5156

Subjects

Engineering, Multidisciplinary

•

Engineering, Electrical & Electronic

•

Engineering

•

capacitive parasitic elements

•

dielectric elastomer actuators (deas)

•

flyback converter

•

pulse gate driver transformer

•

ultra-high-voltage gain

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LAI  
CAM  
Available on Infoscience
September 25, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/181599
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés