Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. 3D Printing of Strong and Tough Double Network Granular Hydrogels
 
research article

3D Printing of Strong and Tough Double Network Granular Hydrogels

Hirsch, Matteo  
•
Charlet, Alvaro Lino Boris  
•
Amstad, Esther  
October 29, 2020
Advanced Functional Materials

Many soft natural tissues display a fascinating set of mechanical properties that remains unmatched by manmade counterparts. These unprecedented mechanical properties are achieved through an intricate interplay between the structure and locally varying the composition of these natural tissues. This level of control cannot be achieved in soft synthetic materials. To address this shortcoming, a novel 3D printing approach to fabricate strong and tough soft materials is introduced, namely double network granular hydrogels (DNGHs) made from compartmentalized reagents. This is achieved with an ink composed of microgels that are swollen in a monomer‐containing solution; after the ink is additive manufactured, these monomers are converted into a percolating network, resulting in a DNGH. These DNGHs are sufficiently stiff to repetitively support tensile loads up to 1.3 MPa. Moreover, they are more than an order of magnitude tougher than each of the pure polymeric networks they are made from. It is demonstrated that this ink enables printing macroscopic, strong, and tough objects, which can optionally be rendered responsive, with high shape fidelity. The modular and robust fabrication of DNGHs opens up new possibilities to design adaptive, strong, and tough hydrogels that have the potential to advance, for example, soft robotic applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

adfm.202005929.pdf

Type

Publisher's Version

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.02 MB

Format

Adobe PDF

Checksum (MD5)

c1a60b42fbdee3437fee5e35a2d41149

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés