Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate
 
conference paper

Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate

Boghossian, Ardemis A.  
•
Ham, Moon-Ho
•
Choi, Jong Hyun
Show more
2010
Abstracts of Papers, 240th ACS National Meeting

Naturally occurring photosynthetic systems in plants are supported by elaborate pathways of self-repair that limit the impact of photo-damage. Herein, we demonstrate a complex consisting of two recombinant proteins, phospholipids and a carbon nanotube that reversibly assembles into a particular configuration, forming an array of 4 nm lipid bilayers housing light-converting proteins. The system can reversibly self-assemble into this configuration, and disassemble upon the addn. of sodium cholate, over an indefinite no. of cycles. The assembly is thermodynamically meta-stable and can only transition reversibly between free components and assembled state if the rate of surfactant removal exceeds about 10-5 sec-1. Only in the assembled state, do the complexes exhibit photoelectrochem. activity. We demonstrate a regeneration cycle that utilizes only surfactant to signal between assembly and disassembly with the result that photo-conversion efficiency is increased more than 300% over 168 h, and the useable lifetime extended indefinitely. [on SciFinder(R)]

  • Details
  • Metrics
Type
conference paper
Author(s)
Boghossian, Ardemis A.  
Ham, Moon-Ho
Choi, Jong Hyun
Strano, Michael S.
Date Issued

2010

Publisher

American Chemical Society

Published in
Abstracts of Papers, 240th ACS National Meeting
Start page

COLL

End page

510

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LNB  
Available on Infoscience
March 3, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111831
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés