Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Information Theoretic Combination of Classifiers With Application to Multiple SVMs
 
report

Information Theoretic Combination of Classifiers With Application to Multiple SVMs

Meynet, J.  
•
Thiran, J.  
2006

Combining several classifiers has proved to be an efficient machine learning technique. Two concepts influence clearly the efficiency of an ensemble: the diversity between classifiers and the individual accuracies of the classifiers. We use an information theoretic framework to establish a link between these quantities and as they appear to be contradictory, we propose an information theoretic measure that express a trade-off between individual accuracy and diversity. This technique can be directly adapted for the selection of an ensemble in a pool of classifiers. We then consider the particular case of multiple Support Vector Machines using this new measure. We will cover genetic algorithm optimization as well as a adaptation of the Kernel-Adatron algorithm to online learning of multiple SVMs. The results are compared to standard multiple SVMs techniques.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ITCC_SVMs.pdf

Access type

openaccess

Size

891.15 KB

Format

Adobe PDF

Checksum (MD5)

8e0b463b833d321da681acaaaf90b245

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés