Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On Short Sums Of Trace Functions
 
research article

On Short Sums Of Trace Functions

Fouvry, Etienne
•
Kowalski, Emmanuel
•
Michel, Philippe  
Show more
2017
Annales De L Institut Fourier

We consider sums of oscillating functions on intervals in cyclic groups of size close to the square root of the size of the group. We first prove non-trivial estimates for intervals of length slightly larger than this square root (bridging the "Polya-Vinogradov gap" in some sense) for bounded functions with bounded Fourier transforms. We then prove that the existence of non-trivial estimates for ranges slightly below the square-root bound is stable under the discrete Fourier transform. We then give applications related to trace functions over finite fields.

  • Details
  • Metrics
Type
research article
DOI
10.5802/aif.3087
Web of Science ID

WOS:000393926100013

Author(s)
Fouvry, Etienne
Kowalski, Emmanuel
Michel, Philippe  
Raju, Chandra Sekhar
Rivat, Joel
Soundararajan, Kannan
Date Issued

2017

Publisher

Annales Inst Fourier

Published in
Annales De L Institut Fourier
Volume

67

Issue

1

Start page

423

End page

449

Subjects

Short exponential sums

•

trace functions

•

van der Corput lemma

•

completion method

•

Riemann Hypothesis over finite fields

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TAN  
Available on Infoscience
March 27, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/135952
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés