Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Modeling Facial Geometry using Compositional VAEs
 
conference paper

Modeling Facial Geometry using Compositional VAEs

Bagautdinov, Timur  
•
Wu, Chenglei
•
Saragih, Jason
Show more
June 18, 2018
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Conference on Computer Vision and Pattern Recognition (CVPR)

We propose a method for learning non-linear face geometry representations using deep generative models. Our model is a variational autoencoder with multiple levels of hidden variables where lower layers capture global geometry and higher ones encode more local deformations. Based on that, we propose a new parameterization of facial geometry that naturally decomposes the structure of the human face into a set of semantically meaningful levels of detail. This parameterization enables us to do model fitting while capturing varying level of detail under different types of geometrical constraints.​

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

bagautdinov.cvae.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

6.77 MB

Format

Adobe PDF

Checksum (MD5)

0cc77490c12309384098381b35a1867f

Loading...
Thumbnail Image
Name

supp.zip

Access type

openaccess

Size

14.26 MB

Format

ZIP

Checksum (MD5)

388163ece9e6cd6c37fe1913969f9840

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés