Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Magnetic field, frequency and temperature dependence of complex conductance of ultrathin La1.65Sr0.45CuO4/La2CuO4 films and the organic superconductors kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br
 
research article

Magnetic field, frequency and temperature dependence of complex conductance of ultrathin La1.65Sr0.45CuO4/La2CuO4 films and the organic superconductors kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br

Gasparov, V. A.
•
He, Xi
•
Dubuis, G.  
Show more
2015
International Journal Of Modern Physics B

We used atomic-layer molecular beam epitaxy (ALL-MBE) to synthesize bilayer films of a cuprate metal (La1.65Sr0.45CuO4, LSCO) and a cuprate insulator (La2CuO4, LCO), in which interface superconductivity occurs in a layer that is just one-half unit cell thick. We have studied the magnetic field and temperature dependence of the complex sheet conductance, sigma(omega), of these films, and compared them to kappa-(BEDT-TTF)(2)Cu[N(CN)(2)] Br single crystals. The magnetic field H was applied both parallel and perpendicular to the 2D conducting layers. Experiments have been carried out at frequencies between 23 kHz and 50 MHz using either two-coil mutual inductance technique, or the LC resonators with spiral or rectangular coils. The real and the imaginary parts of the mutual-inductance M(T,omega) between the coil and the sample were measured and converted to complex conductivity. For H perpendicular to the conducting layers, we observed almost identical behavior in both films and kappa-Br single crystals: (i) the transition onset in the inductive response, L-k(-1) (T) occurs at a temperature lower by 2 K than in Re sigma(T), (ii) this shift is almost constant with magnetic field up to 8 T; (iii) the vortex diffusion constant D(T) is exponential due to pinning of vortex cores. These results can be described by the extended dynamic theory of the Berezinski-Kosterlitz-Thouless (BKT) transition and dynamics of bound vortex-antivortex pairs with short separation lengths.

  • Details
  • Metrics
Type
research article
DOI
10.1142/S0217979215420126
Web of Science ID

WOS:000362979100013

Author(s)
Gasparov, V. A.
He, Xi
Dubuis, G.  
Pavuna, D.  
Kushch, N. D.
Yagubskii, E. B.
Schlueter, J. A.
Bozovic, I.
Date Issued

2015

Publisher

World Scientific Publ Co Pte Ltd

Published in
International Journal Of Modern Physics B
Volume

29

Issue

25-26

Article Number

1542012

Subjects

Superconducting heterostructures

•

organic single crystals

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPMC  
Available on Infoscience
December 2, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/121081
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés