Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Time-Resolved Scanning Ion Conductance Microscopy for Three-Dimensional Tracking of Nanoscale Cell Surface Dynamics
 
research article

Time-Resolved Scanning Ion Conductance Microscopy for Three-Dimensional Tracking of Nanoscale Cell Surface Dynamics

Leitao, Samuel M.  
•
Drake, Barney  
•
Pinjusic, Katarina  
Show more
November 23, 2021
Acs Nano

Nanocharacterization plays a vital role in understanding the complex nanoscale organization of cells and organelles. Understanding cellular function requires high-resolution information about how the cellular structures evolve over time. A number of techniques exist to resolve static nanoscale structure of cells in great detail (super-resolution optical microscopy, EM, AFM). However, time-resolved imaging techniques tend to either have a lower resolution, are limited to small areas, or cause damage to the cells, thereby preventing long-term time-lapse studies. Scanning probe microscopy methods such as atomic force microscopy (AFM) combine high-resolution imaging with the ability to image living cells in physiological conditions. The mechanical contact between the tip and the sample, however, deforms the cell surface, disturbs the native state, and prohibits long-term time-lapse imaging. Here, we develop a scanning ion conductance microscope (SICM) for high-speed and long-term nanoscale imaging of eukaryotic cells. By utilizing advances in nanopositioning, nanopore fabrication, microelectronics, and controls engineering, we developed a microscopy method that can resolve spatiotemporally diverse three-dimensional (3D) processes on the cell membrane at sub-5-nm axial resolution. We tracked dynamic changes in live cell morphology with nanometer details and temporal ranges of subsecond to days, imaging diverse processes ranging from endocytosis, micropinocytosis, and mitosis to bacterial infection and cell differentiation in cancer cells. This technique enables a detailed look at membrane events and may offer insights into cell-cell interactions for infection, immunology, and cancer research.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acsnano.1c05202
Web of Science ID

WOS:000747115200044

Author(s)
Leitao, Samuel M.  
Drake, Barney  
Pinjusic, Katarina  
Pierrat, Xavier  
Navikas, Vytautas  
Nievergelt, Adrian P.  
Brillard, Charlene  
Djekic, Denis
Radenovic, Aleksandra  
Persat, Alexandre  
Show more
Date Issued

2021-11-23

Publisher

AMER CHEMICAL SOC

Published in
Acs Nano
Volume

15

Issue

11

Start page

17613

End page

17622

Subjects

Chemistry, Multidisciplinary

•

Chemistry, Physical

•

Nanoscience & Nanotechnology

•

Materials Science, Multidisciplinary

•

Chemistry

•

Science & Technology - Other Topics

•

Materials Science

•

long-term time-lapse microscopy

•

scanning ion conductance microscopy (sicm)

•

live-cell 3d imaging

•

subsecond imaging

•

nanoscale cell surface dynamics

•

cancer cells

•

bacterial infection

•

platform

•

long

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LBEN  
UPCDA  
Available on Infoscience
February 28, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/185826
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés