Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Weyl-type bounds for Steklov eigenvalues
 
research article

Weyl-type bounds for Steklov eigenvalues

Provenzano, Luigi  
•
Stubbe, Joachim  
January 1, 2019
Journal Of Spectral Theory

We present upper and lower bounds for Steklov eigenvalues for domains in RN+1 with C-2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kernel. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.

  • Details
  • Metrics
Type
research article
DOI
10.4171/JST/250
Web of Science ID

WOS:000455439300012

Author(s)
Provenzano, Luigi  
Stubbe, Joachim  
Date Issued

2019-01-01

Publisher

EUROPEAN MATHEMATICAL SOC

Published in
Journal Of Spectral Theory
Volume

9

Issue

1

Start page

349

End page

377

Subjects

Mathematics, Applied

•

Mathematics

•

steklov eigenvalue problem

•

laplace-beltrami operator

•

eigenvalue bounds

•

weyl eigenvalue asymptotics

•

riesz-means

•

min-max principle

•

distance to the boundary

•

tubular neighborhood

•

spectral stability

•

inequalities

•

convergence

•

manifolds

•

laplacian

•

operators

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
MATH  
Available on Infoscience
January 25, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/154122
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés