Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. CCNoC: On-Chip Interconnects for Cache-Coherent Manycore Server Chips
 
conference paper

CCNoC: On-Chip Interconnects for Cache-Coherent Manycore Server Chips

Seiculescu, Ciprian  
•
Volos, Stavros  
•
Khosro Pour, Naser  
Show more
2011
Proceedings of the Workshop on Energy-Efficient Design (WEED 2011)
Workshop on Energy-Efficient Design (WEED 2011)

Manycore chips are emerging as the architecture of choice to provide power-scalability and improve performance while riding the Moore’s law. On-chip interconnects are increasingly playing a pivotal role in power- and performance- scalability of such microarchitectures. As supply voltages begin to level off in future technologies, chip designs in general and interconnects in particular are resorting to specialization to provide power- and performance-scalability. In this paper, we make the observation that cache-coherent manycore chips exhibit a duality in on-chip network traffic. Request traffic typically consists of control packets requiring narrow low-power switches, while response traffic often carries cache block-sized payloads that require wider and higher-power switches. We present Cache-Coherence Network-on-Chip (CCNoC), a design to capitalize on this duality in traffic and provide a pair of asymmetric switches that optimize power and performance over conventional onchip interconnects. Cycle-accurate simulation results for a 4x4 chip multiprocessor with a shared last-level cache running commercial server workloads indicate 22% improvement in power over a torus and 38% improvement in power over a mesh with larger channel width, while providing similar performance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ccnoc_weed11.pdf

Access type

openaccess

Size

293.4 KB

Format

Adobe PDF

Checksum (MD5)

344881223f9d8de4abc942ee3190399a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés