Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime
 
research article

A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime

Wattel, Sacha Zenon  
•
Molinari, Jean-François
2024
The Journal of Chemical Physics

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, which governs the ductile to brittle transition in adhesive wear, and further helped in the understanding of the relation between tangential work and wear rate or how self-affine surfaces emerge in three-body wear. However, so far, the studies were mostly limited to adhesive wear processes where the two surfaces in contact are composed of the same material. Here, we propose to study the transition from adhesive to abrasive wear by introducing a contrast of hardness between the contacting surfaces. Two wear processes emerge: one by gradual accretion of the third body by detachment of chips from both surfaces and the other being a more erratic mixed process involving large deformation of the third body and removal of large pieces from the soft surface. The critical length scale was found to be a good predictor of the ductile to brittle transition between both processes. Furthermore, the wear coefficients and wear ratios of soft and hard surfaces were found to be consistent with experimental observations. The wear particle is composed of many concentric layers, an onion-like structure, resulting from the gradual accretion of matter from both surfaces. The distribution of sizes of these layers was studied, and it appears that the cumulative distribution of hard surface’s chip sizes follows a power law.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

014711_1_5.0176553.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

5.4 MB

Format

Adobe PDF

Checksum (MD5)

4e37b4fdddfcf90c4ccbd20e043f11b8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés