Publication:

Covering Convex Bodies and the Closest Vector Problem

cris.lastimport.scopus

2024-08-08T11:37:41Z

cris.legacyId

270059

cris.virtual.parent-organization

MATH

cris.virtual.parent-organization

SB

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

MATH

cris.virtual.parent-organization

SB

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

251863

cris.virtual.sciperId

235946

cris.virtual.unitId

11879

cris.virtual.unitId

11887

cris.virtual.unitManager

Eisenbrand, Friedrich

cris.virtual.unitManager

Dyson, Paul Joseph

cris.virtualsource.author-scopus

0c363f51-1475-48ed-a706-d11ce8a70fee

cris.virtualsource.author-scopus

6677cb0e-899e-4227-be9c-290c0452c47d

cris.virtualsource.department

0c363f51-1475-48ed-a706-d11ce8a70fee

cris.virtualsource.department

6677cb0e-899e-4227-be9c-290c0452c47d

cris.virtualsource.orcid

0c363f51-1475-48ed-a706-d11ce8a70fee

cris.virtualsource.orcid

6677cb0e-899e-4227-be9c-290c0452c47d

cris.virtualsource.parent-organization

9fe6b9fb-3f51-4ac4-9e7d-907a4298317f

cris.virtualsource.parent-organization

9fe6b9fb-3f51-4ac4-9e7d-907a4298317f

cris.virtualsource.parent-organization

9fe6b9fb-3f51-4ac4-9e7d-907a4298317f

cris.virtualsource.parent-organization

9fe6b9fb-3f51-4ac4-9e7d-907a4298317f

cris.virtualsource.parent-organization

9094dbac-79e2-4931-90d7-4dafb829dcae

cris.virtualsource.parent-organization

9094dbac-79e2-4931-90d7-4dafb829dcae

cris.virtualsource.parent-organization

9094dbac-79e2-4931-90d7-4dafb829dcae

cris.virtualsource.parent-organization

9094dbac-79e2-4931-90d7-4dafb829dcae

cris.virtualsource.rid

0c363f51-1475-48ed-a706-d11ce8a70fee

cris.virtualsource.rid

6677cb0e-899e-4227-be9c-290c0452c47d

cris.virtualsource.sciperId

0c363f51-1475-48ed-a706-d11ce8a70fee

cris.virtualsource.sciperId

6677cb0e-899e-4227-be9c-290c0452c47d

cris.virtualsource.unitId

9fe6b9fb-3f51-4ac4-9e7d-907a4298317f

cris.virtualsource.unitId

9094dbac-79e2-4931-90d7-4dafb829dcae

cris.virtualsource.unitManager

9fe6b9fb-3f51-4ac4-9e7d-907a4298317f

cris.virtualsource.unitManager

9094dbac-79e2-4931-90d7-4dafb829dcae

datacite.rights

openaccess

dc.contributor.author

Naszódi, Márton

dc.contributor.author

Venzin, Moritz Andreas

dc.date.accessioned

2019-09-03T10:18:49

dc.date.available

2019-09-03T10:18:49

dc.date.created

2019-09-03

dc.date.issued

2022-05-05

dc.date.modified

2024-10-17T16:28:23.070825Z

dc.description.abstract

We present algorithms for the (1+epsilon)-approximate version of the closest vector problem for certain norms. The currently fastest algorithm (Dadush and Kun 2016) for general norms in dimension n has running time of 2(O(n)) (1/epsilon)(n) . We improve this substantially in the following two cases. First, for l(p)-norms with p > 2 (resp. p epsilon [1, 2]) fixed, we present an algorithm with a running time of 2(O(n))(1 +1/epsilon)(n/2) (resp.2(O(n))(1+1/epsilon)(n/p)). This result is based on a geometric covering problem, that was introduced in the context of CVP by Eisenbrand et al.: How many convex bodies are needed to cover the ball of the norm such that, if scaled by factor 2 around their centroids, each one is contained in the (1 + epsilon )-scaled homothet of the norm ball? We provide upper bounds for this (2, epsilon)-covering number by exploiting the modulus of smoothness of the l(p)-balls. Applying a covering scheme, we can boost any 2-approximation algorithm for CVP to a (1 + epsilon)-approximation algorithm with the improved run time, either using a straightforward sampling routine or using the deterministic algorithm of Dadush for the construction of an epsilon net. Second, we consider polyhedral and zonotopal norms. For centrally symmetric polytopes (resp. zonotopes) in R-n with O(n) facets (resp. generated by O(n) line segments), we provide a deterministic O(log(2)(2 + 1/epsilon))(O(n)) time algorithm. This generalizes the result of Eisenbrand et al. which applies to the l(infinity) -norm. Finally, we establish a connection between the modulus of smoothness and lattice sparsification. As a consequence, using the enumeration and sparsification tools developped by Dadush, Kun, Peikert, and Vempala, we present a simple alternative to the boosting procedure with the same time and space requirement for l(p) norms. This connection might be of independent interest.

dc.description.sponsorship

DISOPT

dc.description.sponsorship

DCG

dc.identifier.doi

10.1007/s00454-022-00392-x

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/160790

dc.relation

https://infoscience.epfl.ch/record/270059/files/1908.08384.pdf

dc.relation.journal

Discrete & Computational Geometry

dc.subject

Covering convex bodies

dc.subject

Boosting constant approximation algorithms

dc.subject

Modulus of smoothness

dc.title

Covering Convex Bodies and the Closest Vector Problem

dc.type

text::journal::journal article::research article

dspace.entity.type

Publication

dspace.file.type

preprint

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:270059

epfl.curator.email

valerie.charbonnier@epfl.ch

epfl.lastmodified.email

jorge.rodriguesdematos@epfl.ch

epfl.legacy.itemtype

Journal Articles

epfl.legacy.submissionform

ARTICLE

epfl.oai.currentset

SB

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

article

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

oaire.citation.endPage

1210

oaire.citation.issue

4

oaire.citation.startPage

1191

oaire.citation.volume

67

oaire.licenseCondition

copyright

oaire.version

http://purl.org/coar/version/c_71e4c1898caa6e32

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1908.08384.pdf
Size:
411.01 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections