Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stepwise Luneburg Lens for Bloch Surface Waves
 
research article

Stepwise Luneburg Lens for Bloch Surface Waves

Kim, Myun-Sik  
•
Vosoughi Lahijani, Babak  
February 6, 2018
Applied Sciences

In order to enlarge the capability for in-plane manipulation of the Bloch surface wave (BSW), we investigate 2D gradient index (GRIN) optical components using a finite-difference time-domain (FDTD) numerical method. To ease difficulties in fabrication to acquire a continuous index profile of GRIN optical components, we propose a stepwise index profile. For 2D surface wave devices, such discrete index steps can be achieved by stepwise structuring of the top layer, also called the device layer. For the demonstration of the stepwise GRIN optics concept, we consider a Luneburg lens, which is a good example of the GRIN optical component that produces a strong focal spot on the shadow-side curvature of the lens. The limited index contrast of the BSW systems loosens the confinement of the focal spot. A mitigation plan is to elongate the circular geometry to the prolate ellipse. BSW-based Luneburg lenses with a relatively small number of steps and an elliptical geometry are demonstrated with comparable performances to a standard Luneburg lens.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ApplSci_18 Luneburg lens-08-00245.pdf

Access type

openaccess

Size

4.14 MB

Format

Adobe PDF

Checksum (MD5)

64498b515b49d02c6728a21b4b9f20cb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés