Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Neural network potential for Zr-H
 
research article

Neural network potential for Zr-H

Liyanage, Manura  
•
Reith, David
•
Eyert, Volker
Show more
December 15, 2024
Journal of Nuclear Materials

The introduction of Hydrogen (H) into Zirconium (Zr) influences many mechanical properties, especially due to low H solubility and easy formation of Zirconium hydride phases. Understanding the various effects of H requires studies with atomistic resolution but at scales that incorporate defects such as cracks, interfaces, and dislocations. Such studies thus demand accurate interatomic potentials. Here, a neural network potential (NNP) for the Zr-H system is developed within the Behler-Parrinello framework. The Zr-H NNP retains the accuracy of a recent NNP for hcp Zr and exhibits excellent agreement with first-principles density functional theory (DFT) for (i) H interstitials and their diffusion in hcp Zr, (ii) formation energies, elastic constants, and surface energies of relevant Zr hydrides, and (iii) energetics of a common Zr/Zr-H interface. The Zr-H NNP shows physical behavior for many different crack orientations in the most-stable ε-hydride, and structures and reasonable relative energetics for the 〈a〉 screw dislocation in pure Zr. This Zr-H NNP should thus be very powerful for future study of many phenomena driving H degradation in Zr that require atomistic detail at scales far above those accessible by first-principles.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1016_j.jnucmat.2024.155341.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.65 MB

Format

Adobe PDF

Checksum (MD5)

8b310cff3793f17fbdc0aa978ffa91af

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés