Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Datasets and Code
  4. Data and scripts for the RaFSIP scheme
 
dataset

Data and scripts for the RaFSIP scheme

Georgakaki, Paraskevi  
•
Nenes, Athanasios  
2024
Zenodo

This repository contains microphysics routines, scripts, and processed data from the Weather Research and Forecasting (WRF) model simulations presented in the paper "RaFSIP: Parameterizing ice multiplication in models using a machine learning approach", by Paraskevi Georgakaki and Athanasios Nenes. RaFSIP is a data-driven parameterization designed to streamline the representation of Secondary Ice Production (SIP) in large-scale models. Preprint available on Authorea: https://doi.org/10.22541/essoar.170365383.34520011/v1

  • Details
  • Metrics
Type
dataset
DOI
10.5281/zenodo.10569644
ACOUA ID

281e1930-b1b9-494b-acb7-5b5549c51251

Author(s)
Georgakaki, Paraskevi  

EPFL

Nenes, Athanasios  

EPFL

Date Issued

2024

Version

v1

Publisher

Zenodo

Subjects

Clouds

•

Arctic

•

Ice multiplication

•

Machine learning

•

Modeling

•

Parameterization

•

Cloud microphysics

•

Random Forests

EPFL units
LAPI  
FunderGrant NO

EU funding

PyroTRACH (726165)

EU funding

FORCeS (821205)

RelationURL/DOI

IsSupplementTo

https://infoscience.epfl.ch/record/307375
Available on Infoscience
January 26, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/203172
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés