Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adaptive Risk-Based Replanning For Human-Aware Multi-Robot Task Allocation With Local Perception
 
research article

Adaptive Risk-Based Replanning For Human-Aware Multi-Robot Task Allocation With Local Perception

Talebpour, Zeynab  
•
Martinoli, Alcherio  
October 1, 2019
IEEE Robotics And Automation Letters

In this letter, we propose an adaptive risk-based replanning strategy in the context of multirobot task allocation for dealing with limitations of local perception and unpredicted human behavior. Our replanning method is based on the variations of social risk and humanmotion prediction uncertainty. The performance of our method is studied through an extensive suite of experiments of increasing complexity. Results obtained using both a high-fidelity simulator and real robots confirm that this strategy outperforms a nonadaptive replanning strategy in all cases with respect to the chosen social metrics. First, the overall performance of the team depends on its replanning strategy, and second on the available information about the humans. Although an adaptive replanning strategy with global perception leads to the best performance, it is computationally expensive and infeasible in some real applications. Local perception shows comparable results as long as updates of relevant human poses affecting a task's risk are available within the execution time of that task. Conversely, the nonadaptive replanning strategy is shown to have degraded results with global perception as decisions in this case can be based on outdated information that lead to invalid plans.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RAL2019.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

4.11 MB

Format

Adobe PDF

Checksum (MD5)

47fd0db25e72303bf32cb9beb250d96c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés