Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Investigations on the Ability of the Insular Cortex to Process Peripheral Immunosuppression
 
Loading...
Thumbnail Image
research article

Investigations on the Ability of the Insular Cortex to Process Peripheral Immunosuppression

Bihorac, Julia
•
Salem, Yasmin
•
Lückemann, Laura
Show more
December 1, 2024
Journal of Neuroimmune Pharmacology

The brain and immune system communicate through complex bidirectional pathways, but the specificity by which the brain perceives or even remembers alterations in immune homeostasis is still poorly understood. Recent data revealed that immune-related information under peripheral inflammatory conditions, termed as “immunengram”, were represented in specific neuronal ensembles in the insular cortex (IC). Chemogenetic reactivation of these neuronal ensembles was sufficient to retrieve the inflammatory stages, indicating that the brain can store and retrieve specific immune responses. Against this background, the current approach was designed to investigate the ability of the IC to process states of immunosuppression pharmacologically induced by the mechanistic target of rapamycin (mTOR) inhibitor rapamycin. We here show that the IC perceives the initial state of immunosuppression, reflected by increased deep-brain electroencephalography (EEG) activity during acute immunosuppressive drug treatment. Following an experienced period of immunosuppression, though, diminished splenic cytokine production as formerly induced by rapamycin could not be reinstated by nonspecific chemogenetic activation or inhibition of the IC. These findings suggest that the information of a past, or experienced status of pharmacologically induced immunosuppression is not represented in the IC. Together, the present work extends the view of immune-to-brain communication during the states of peripheral immunosuppression and foster the prominent role of the IC for interoception.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1007_s11481-024-10143-9.pdf

Type

Main Document

Access type

openaccess

License Condition

CC BY

Size

1.36 MB

Format

Adobe PDF

Checksum (MD5)

64f849c666fde0498160857d5191189a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés