Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Identifying Reactive Sites and Surface Traps in Chalcopyrite Photocathodes
 
research article

Identifying Reactive Sites and Surface Traps in Chalcopyrite Photocathodes

Liu, Yongpeng  
•
Bouri, Maria
•
Yao, Liang  
Show more
October 1, 2021
Angewandte Chemie International Edition

Gathering information on the atomic nature of reactive sites and trap states is key to fine tuning catalysis and suppressing deleterious surface voltage losses in photoelectrochemical technologies. Here, spectroelectrochemical and computational methods were combined to investigate a model photocathode from the promising chalcopyrite family: CuIn0.3Ga0.7S2. We found that voltage losses are linked to traps induced by surface Ga and In vacancies, whereas operando Raman spectroscopy revealed that catalysis occurred at Ga, In, and S sites. This study allows establishing a bridge between the chalcopyrite's performance and its surface's chemistry, where avoiding formation of Ga and In vacancies is crucial for achieving high activity.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Angew Chem Int Ed - 2021.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

copyright

Size

1.29 MB

Format

Adobe PDF

Checksum (MD5)

24307966f048569b69d7bbf42878f87f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés