Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Controlling the rotation of drift tearing modes by biased electrode in ADITYA-U tokamak
 
research article

Controlling the rotation of drift tearing modes by biased electrode in ADITYA-U tokamak

Macwan, Tanmay
•
Singh, Kaushlender
•
Dolui, Suman
Show more
November 1, 2021
Physics Of Plasmas

The influence of background plasma poloidal rotation on the rotation frequency of the m/n = 2/1 drift tearing mode (DTM) has been studied in ADITYA-U tokamak. The poloidal rotation velocity of the background plasma in the ion diamagnetic direction is increased or decreased by inducing an outward or inward radial electric field, respectively, through a biased-electrode placed in the edge region of the plasma. The rotation frequency of the preexisting drift tearing mode, rotating in the electron diamagnetic direction, concomitantly decreased or increased with the application of bias depending on its polarity. The positive-bias increases the background plasma rotation in the ion-diamagnetic direction from its pre-bias value, hence decreasing the DTM rotation frequency, whereas the negative bias reduces the plasma rotation velocity in the ion-diamagnetic direction, hence increasing the mode rotation. In addition to that, a short gas puff introduced during the positive and negative bias pulse further reduces the mode frequency, however, with different amplitudes in different bias-polarities. These observations suggest that the background plasma rotation contributes significantly toward the rotation of DTMs, and the rotation frequency of the magnetohydrodynamic modes can be modified by varying the poloidal rotation of the background plasma and/or the diamagnetic drift frequency.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2_PoP21AR00883R1_revision_3.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

942.85 KB

Format

Adobe PDF

Checksum (MD5)

633ca2eabe513e9bb7865ede58ea2ebb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés