Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Biocementation beyond the Petri dish, scaling up to 900 L batches and a meter-scale column
 
research article

Biocementation beyond the Petri dish, scaling up to 900 L batches and a meter-scale column

Terzis, Dimitrios  
•
Perego, Camilla
•
Cappa, Margherita
Show more
January 24, 2025
Scientific Reports

Microbial-induced calcite precipitation (MICP), which leverages ureolytic microorganisms, has received significant attention during the past decade as a promising method for sustainable building and geoenvironmental applications. However, transitioning from lab-scale experimentation to volumes suitable for practical use poses challenges. This study addresses these obstacles by screening and analyzing over 50 strains sourced from (i) a natural environment in the canton of Ticino in Switzerland; (ii) microorganism banks; and (iii) an industry-scale bioreactor. Several ureolytic Sporosarcina species have been identified in the natural environment, and their ureolytic potential has been compared with that of other strains. A reference, banked microorganism yielded the highest ureolysis rate. When this latter strain was inoculated in 900 L batches and continuously cultivated at 5400 L, no contamination issues were observed, and the reference strain remained the dominant species. The produced culture, obtained under an optimized medium composition involving the circular valorization of NH4+, was subsequently used to induce the biocementation of a 650 kg column of 0-1 mm sand. The results reveal the successful stabilization of the whole mass, with undrained Tresca strength values ranging from 90 to 140 kPa. This research lays the groundwork for scalable MICP production, which is capable of meeting the demands of real-world building and geoenvironmental projects.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41598-025-87074-9.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.87 MB

Format

Adobe PDF

Checksum (MD5)

4e2e9740a0480bfca1001180222757f7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés