Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A collaborative demand forecasting process with event-based fuzzy judgements
 
research article

A collaborative demand forecasting process with event-based fuzzy judgements

Cheikhrouhou, Naoufel  
•
Marmier, François
•
Ayadi, Omar
Show more
2011
Computers & Industrial Engineering

Mathematical forecasting approaches can lead to reliable demand forecast in some environments by extrapolating regular patterns in time-series. However, unpredictable events that do not appear in historical data can reduce the usefulness of mathematical forecasts for demand planning purposes. Since forecasters have partial knowledge of the context and of future events, grouping and structuring the fragmented implicit knowledge, in order to be easily and fully integrated in final demand forecasts is the objective of this work. This paper presents a judgemental collaborative approach for demand forecasting in which the mathematical forecasts, considered as the basis, are adjusted by the structured and combined knowledge from different forecasters. The approach is based on the identification and classification of four types of particular events. Factors corresponding to these events are evaluated through a fuzzy inference system to ensure the coherence of the results. To validate the approach, two case studies were developed with forecasters from a plastic bag manufacturer and a distributor belonging to the food retailing industry. The results show that by structuring and combining the judgements of different forecasters to identify and assess future events, companies can experience a high improvement in demand forecast accuracy.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

A collaborative demand forecasting process with event-based fuzzy judgements.pdf

Type

Publisher's Version

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

966.57 KB

Format

Adobe PDF

Checksum (MD5)

25fc30a70793364c8b7d2e39f42200b6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés