Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Oxide dispersion strengthened steel irradiation with helium ions
 
Loading...
Thumbnail Image
research article

Oxide dispersion strengthened steel irradiation with helium ions

Pouchon, Manuel A.  
•
Chen, Jiachao
•
Döbeli, Max
Show more
2006
Journal of Nuclear Materials

Oxide dispersion strengthened (ODS) ferritic steels are investigated as possible structural material for the future generation of high temperature gas cooled nuclear reactors. ODS-steels are considered to replace other high temperature materials for tubing or structural parts. The oxide particles serve for interfacial pinning of moving dislocations. Therefore, the creep resistance is improved. In case of the usage of these materials in reactors, the behavior under irradiation must be further clarified. In this paper the effects induced by 4He2+ implantation into a ferritic ODS steel are investigated. The fluence ranges from 1016 to 1017 cm−2 and the energy from 1 to 2 MeV. The induced swelling is investigated for implantations at room temperature and 470 K. It is derived from the irradiation induced surface displacement, which is measured with an atomic force microscope (AFM). With a displacement damage of 0.6 dpa, a volume increase of 0.65% is observed at room temperature and 0.33% at 470 K. A cross-sectional cut is performed by focused ion beam and investigated by transmission electron microcopy (TEM). The defect density observed on the TEM micrographs agrees well with the computational simulation (TRIM) of the damage profile.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jnucmat.2006.02.070
Author(s)
Pouchon, Manuel A.  
•
Chen, Jiachao
•
Döbeli, Max
•
Hoffelner, Wolfgang
Date Issued

2006

Publisher

Elsevier

Published in
Journal of Nuclear Materials
Volume

352

Issue

1-3

Start page

57

End page

61

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LNM_PSI  
Available on Infoscience
May 1, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/113633
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés