High-Order Discontinuous Galerkin Methods by GPU Metaprogramming
Discontinuous Galerkin (DG) methods for the numerical solution of par- tial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. In a recent publication, we have shown that DG methods also adapt readily to execution on modern, massively parallel graphics processors (GPUs). A number of qualities of the method contribute to this suitability, reaching from locality of reference, through regularity of access patterns, to high arithmetic intensity. In this article, we illuminate a few of the more practical aspects of bringing DG onto a GPU, including the use of a Python-based metaprogramming infrastructure that was created specifically to support DG, but has found many uses across all disciplines of computational science.
GPUProg2012.pdf
Preprint
Submitted version (Preprint)
openaccess
440.77 KB
Adobe PDF
28476ab26e94c75056e93a7daeaf13af