Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Caching (Bivariate) Gaussians
 
research article

Caching (Bivariate) Gaussians

Veld, Giel J. Op 't
•
Gastpar, Michael  
October 1, 2020
Ieee Transactions On Information Theory

Caching is a technique that alleviates networks during peak hours by transmitting partial information before a request for any is made. In a lossy setting of Gaussian databases, we study a single-user model in which good caching strategies minimize the data still needed on average once the user requests a file. The encoder decides on a caching strategy by weighing the benefit from two key parameters: the prior preference for a file and the correlation among the files. Considering uniform prior preference but correlated files, caching becomes an application of Wyner's common information and Watanabe's total correlation. We show this case triggers a split: caching Gaussian sources is a non-convex optimization problem unless one spends enough rate to cache all the common information between files. Combining both correlation and user preference we explicitly characterize the full trade-off when the encoder uses Gaussian codebooks in a database of two files: we show that as the size of the cache increases, the encoder should change strategy and increasingly prioritize user preference over correlation. In this specific case we also address the loss in performance incurred if the encoder has no knowledge of the user's preference and show that this loss is bounded.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Caching_Gaussian_final.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

n/a

Size

818.61 KB

Format

Adobe PDF

Checksum (MD5)

3a338eeebd739e6442ae16cec7c59519

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés