Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Soft Sensorized Physical Twin for Harvesting Raspberries
 
conference presentation

Soft Sensorized Physical Twin for Harvesting Raspberries

Junge, Kai  
•
Hughes, Josie  
2022
Conference proceedings of the RoboSoft 2022
5th International Conference on Soft Robotics (RoboSoft 2022)

The use of robotic systems for harvesting of crops is a growing application domain in the agriculture sector. A key challenge is to develop robotic systems to harvest soft fruits such as raspberries which require delicate handling as they are easily damaged. Designing and optimizing a robotic harvesting setup by testing on real raspberry crops can be challenging due to the short natural harvesting period and the cost and logistical challenges of running experiments in the field. To solve this problem, we present a sensorized physical twin of a raspberry which can be used to develop robotic harvesting systems before deploying in the field. The sensorized raspberry has the capability of measuring the applied forces before and after it has been picked off the plant with a high sensitivity. The mechanical design was optimized and a material with properties similar to the real fruit was chosen, in order to achieve similar mechanical properties to a real raspberry, specifically the stiffness before and after picking and the pulling force. The paper concludes with a harvesting demonstration performed by a robotic gripper, where the sensorized raspberry is used to assess the quality of the picking action. This work aims to lay the groundwork for accelerating the future development of robotic harvesting systems to enable robust development in a lab before deployment in the field.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

robosoft_2022_raspberry_final_version.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

MIT License

Size

3.96 MB

Format

Adobe PDF

Checksum (MD5)

bae1c67f53f305779cc3dee552eb9a7a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés