Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A new twist on spinning (A)dS correlators
 
research article

A new twist on spinning (A)dS correlators

Baumann, Daniel
•
Mathys, Grégoire  
•
Pimentel, Guilherme L.
Show more
January 1, 2025
Journal of High Energy Physics

Massless spinning correlators in cosmology are extremely complicated. In contrast, the scattering amplitudes of massless particles with spin are very simple. We propose that the reason for the unreasonable complexity of these correlators lies in the use of inconvenient kinematic variables. For example, in de Sitter space, consistency with unitarity and the background isometries imply that the correlators must be conformally covariant and also conserved. However, the commonly used kinematic variables for correlators do not make all of these properties manifest. In this paper, we introduce twistor space as a powerful way to satisfy all kinematic constraints. We show that conformal correlators of conserved currents can be written as twistor integrals, where the conservation condition translates into holomorphicity of the integrand. The functional form of the twistor-space correlators is very simple and easily bootstrapped. For the case of two- and three-point functions, we verify explicitly that this reproduces known results in embedding space. We also perform a half-Fourier transform of the twistor-space correlators to obtain their counterparts in momentum space. We conclude that twistors provide a promising new avenue to study conformal correlation functions that exposes their hidden simplicity.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1007_jhep01(2025)202.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.17 MB

Format

Adobe PDF

Checksum (MD5)

0756bcfb169b08287a800297d130c2f1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés