Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Implicit Distance Functions: Learning and Applications in Control
 
conference poster not in proceedings

Implicit Distance Functions: Learning and Applications in Control

Koptev, Mikhail  
•
Figueroa Fernandez, Nadia Barbara  
•
Billard, Aude  
May 27, 2022
International Conference on Robotics and Automation (ICRA 2022)

This paper describes a novel approach to learn an implicit, differentiable distance function for arbitrary configurations of a robotic manipulator used for reactive control. By exploiting GPU processing, we efficiently query the learned collision representation and obtain an implicit distance between the robot and the environment. The differentiable nature of the learned function allows for calculating valid gradients wrt. any robot configuration, providing a repulsive vector field in joint space that can be injected in various control methods to improve collision avoidance. We present preliminary results on solving collision avoidance for a 7DoF robot with a reactive inverse kinematics solution, as well as improving performance of a sampling-based model-predictive controller.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

koptev.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

891.1 KB

Format

Adobe PDF

Checksum (MD5)

594018b8ce9558b274099e99f8b21a32

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés