Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CHD3 Dissociation on the Kinked Pt(210) Surface: A Comparison of Experiment and Theory
 
research article

CHD3 Dissociation on the Kinked Pt(210) Surface: A Comparison of Experiment and Theory

Chadwick, Helen
•
Gutiérrez-González, Ana
•
Beck, Rainer D.
Show more
May 22, 2019
Journal of Physical Chemistry C

To be able to simulate activated heterogeneously catalyzed reactions on the edge and corner sites of nanoparticles, a method for calculating accurate activation barriers for the reactions is required. We have recently demonstrated that a semiempirical specific reaction parameter (SRP) density functional developed to describe CHD3 dissociation on a flat Ni(111) surface is transferable to describing the same reaction on a stepped Pt(211) surface. In the current work, we compare initial sticking coefficients measured using the King and Wells beam reflectivity technique and calculated from ab initio molecular dynamics trajectories using the same SRP functional for CHD3 dissociation on a kinked Pt(210) surface at a temperature of 650 K. The calculated sticking coefficients overestimate those determined experimentally, with an average energy shift between the two curves of 13.6 kJ/mol, which is over a factor of 3 times higher than the 4.2 kJ/mol limit that defines chemical accuracy. This suggests the SRP functional predicts an activation barrier that is too low for the dissociation on the least coordinated kink atom, which is the site of the lowest energy transition state and where most of the dissociation occurs in the calculations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

acs.jpcc.CHD3 on Pt(210)).pdf

Access type

openaccess

Size

3.75 MB

Format

Adobe PDF

Checksum (MD5)

60c40fd078b225935ae85055a227c115

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés