Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimizing photon capture: advancements in amorphous silicon-based microchannel plates
 
research article

Optimizing photon capture: advancements in amorphous silicon-based microchannel plates

Frey, Samira  
•
Antognini, Luca  
•
Benserhir, Jad  
Show more
December 1, 2025
Communications Engineering

Microchannel plates are electron multipliers widely used in applications such as particle detection, imaging, or mass spectrometry and are often paired with a photocathode to enable photon detection. Conventional microchannel plates, made of glass fibers, face limitations in manufacturing flexibility and integration with electronic readouts. Hydrogenated amorphous silicon-based microchannel plates offer a compelling alternative and provide unique advantages in these areas. Here, we report on the characterization of the time resolution of amorphous silicon-based microchannel plates. Using high photoelectron flux and an amplifier, we measured a time resolution of (4.6 ± 0.1) ps, while at lower fluxes, the arrival time uncertainty increased to (12.6 ± 0.2) ps. By minimizing the distance between the detector and a low-noise amplifier, we achieved a time resolution of (6.1 ± 0.2) ps even at low fluxes, demonstrating the exceptional timing capabilities of these detectors. Furthermore, we developed a new detector generation with funnel-shaped channel openings, increasing the active area to 95% and with simulated electron detection efficiency over 92%. Preliminary testing shows promising results, though challenges remain in single-particle detection. These findings highlight the potential of amorphous silicon-based microchannel plates for applications requiring high temporal resolution and detection efficiency.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s44172-025-00394-6.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.99 MB

Format

Adobe PDF

Checksum (MD5)

4bc06835c5bcc4b9a45cc86de1df1bf6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés