Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Prediction of phase ambiguity resolution based on signal intensity and geometry
 
research article

Prediction of phase ambiguity resolution based on signal intensity and geometry

Skaloud, Jan  
•
Willli, Daniel
2015
Gps Solutions

The goal of this contribution was to develop a reliable quality indicator reflecting the potential success of differential carrier phase ambiguity resolution for kinematic Global Positioning System (GPS). The indicator must be operable without any communication link between the rover and the reference station. Two common existing GPS quality measures are combined: firstly, the SIGMA model, which is a signal intensity-based weighing scheme reflecting the actual signal quality, and secondly, the ambiguity dilution of preci- sion (ADOP), which is an indicator of the geometric strength of a constellation. Together, these two established indicators form the newly developed ADOP+. In the first part of the present work, a calibration is conducted in order to obtain the parameters for the SIGMA model. In the second part, the ADOP+ is derived and implemented. A practical test is per- formed on a motorcycle in order to validate the concept. The ADOP+ is proven to be meaningful and well performing within the empirical case. It is able to predict the success of phase ambiguity resolution in the majority of situations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2014_Willi_GPSol_PredAmbigRes_final.pdf

Access type

restricted

Size

1.16 MB

Format

Adobe PDF

Checksum (MD5)

f537029a34e54b26506cd0a48504d472

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés