Publication:

Test-time adaptation for 6D pose tracking

cris.lastimport.scopus

2025-08-05T07:56:03Z

cris.lastimport.wos

2024-07-25T03:51:45Z

cris.legacyId

311391

cris.virtual.author-scopus

7103233230

cris.virtual.department

LIDIAP

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

117703

cris.virtual.unitId

10381

cris.virtual.unitManager

Cavallaro, Andrea

cris.virtualsource.author-scopus

5d826d0b-64a8-4c0e-9d29-3c775566ee91

cris.virtualsource.department

5d826d0b-64a8-4c0e-9d29-3c775566ee91

cris.virtualsource.orcid

5d826d0b-64a8-4c0e-9d29-3c775566ee91

cris.virtualsource.parent-organization

698d568c-939f-4ee2-b445-0b4cb7d94a7d

cris.virtualsource.parent-organization

698d568c-939f-4ee2-b445-0b4cb7d94a7d

cris.virtualsource.parent-organization

698d568c-939f-4ee2-b445-0b4cb7d94a7d

cris.virtualsource.parent-organization

698d568c-939f-4ee2-b445-0b4cb7d94a7d

cris.virtualsource.rid

5d826d0b-64a8-4c0e-9d29-3c775566ee91

cris.virtualsource.sciperId

5d826d0b-64a8-4c0e-9d29-3c775566ee91

cris.virtualsource.unitId

698d568c-939f-4ee2-b445-0b4cb7d94a7d

cris.virtualsource.unitManager

698d568c-939f-4ee2-b445-0b4cb7d94a7d

datacite.rights

metadata-only

dc.contributor.author

Tian, Long

dc.contributor.author

Oh, Changjae

dc.contributor.author

Cavallaro, Andrea

dc.date.accessioned

2024-06-05T14:24:53

dc.date.available

2024-06-05T14:24:53

dc.date.created

2024-06-05

dc.date.issued

2024-04-01

dc.date.modified

2025-01-23T18:15:31.724345Z

dc.description.abstract

We propose a test -time adaptation for 6D object pose tracking that learns to adapt a pre -trained model to track the 6D pose of novel objects. We consider the problem of 6D object pose tracking as a 3D keypoint detection and matching task and present a model that extracts 3D keypoints. Given an RGB-D image and the mask of a target object for each frame, the proposed model consists of the selfand cross -attention modules to produce the features that aggregate the information within and across frames, respectively. By using the keypoints detected from the features for each frame, we estimate the pose changes between two frames, which enables 6D pose tracking when the 6D pose of a target object in the initial frame is given. Our model is first trained in a source domain, a category -level tracking dataset where the ground truth 6D pose of the object is available. To deploy this pre -trained model to track novel objects, we present a test -time adaptation strategy that trains the model to adapt to the target novel object by self -supervised learning. Given an RGB-D video sequence of the novel object, the proposed self -supervised losses encourage the model to estimate the 6D pose changes that can keep the photometric and geometric consistency of the object. We validate our method on the NOCS-REAL275 dataset and our collected dataset, and the results show the advantages of tracking novel objects. The collected dataset and visualisation of tracking results are available: https://qm-ipalab.github.io/TA-6DT/

dc.description.sponsorship

LIDIAP

dc.identifier.doi

10.1016/j.patcog.2024.110390

dc.identifier.isi

WOS:001219519500001

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/208319

dc.publisher

Elsevier Sci Ltd

dc.publisher.place

London

dc.relation.issn

0031-3203

dc.relation.issn

1873-5142

dc.relation.journal

Pattern Recognition

dc.source

WoS

dc.subject

Technology

dc.subject

6D Pose Tracking

dc.subject

Keypoints Detection

dc.subject

Self-Supervised Learning

dc.subject

Transformer

dc.title

Test-time adaptation for 6D pose tracking

dc.type

text::journal::journal article::research article

dspace.entity.type

Publication

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:311391

epfl.curator.email

francois.schmitt@epfl.ch

epfl.legacy.itemtype

Journal Articles

epfl.legacy.submissionform

ARTICLE

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

STI

epfl.oai.currentset

article

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

oaire.citation.articlenumber

110390

oaire.citation.volume

152

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections