Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Solving Stochastic Ordinary Differential Equations by Monte Carlo and Polynomial Chaos
 
semester or other student projects

Solving Stochastic Ordinary Differential Equations by Monte Carlo and Polynomial Chaos

Brunner, Gilles  
2013

In this project, we study and compare two methods to solve stochastic ordinary differential equations. The first is the Monte Carlo method and the second uses Polynomial Chaos. In the first part, we will solve a stochastic ordinary differential equation by both a crude Monte Carlo method and a Quasi-Monte Carlo method. Convergence analysis of the two different methods is performed. Generation of samples according to different probability distributions is studied in detail. In the second part, we will approximate functions by orthogonal polynomial. Several classical orthogonal polynomials are introduced and the property of orthogonality is checked for the first few polynomials. Approximation for different functions leading to different convergence results is carried out. In particular, the Gibbs phenomenon is analyzed. This will be useful for the polynomial chaos expansion which approximate the solution of a stochastic ordinary differential equation by orthogonal polynomials and calculate its expectation by quadrature formula. We will give examples of several type of polynomial chaos and applies them to solve stochastic ordinary differential equations. These two methods being different, we are interested in study their rate of convergence. In fact, we will see that the Monte Carlo method has a polynomial convergence rate and the polynomial chaos achieves an exponential convergence rate for our test example.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

brunner_semester_project_I.pdf

Access type

restricted

Size

7.53 MB

Format

Adobe PDF

Checksum (MD5)

c8234fa1760c7d4afbf0b18eb0604811

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés